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Abstract. The drift of electrons in argon,  krypton  and  xenon is studied  for  the  reduced 
electric  field  range of interest  for  electroluminescence  based  radiation  detectors ( € / p  = 0.5 
to 5 V cm" Torr"),  using  a  unidimensional  Monte  Carlo  model  which is described  in  detail. 
Appropriate  factors  are  introduced in this  model to take  into  account  the  three-dimensional 
nature of the  electron  scattering  process.  Electron  drift  velocities,  reduced  light  output  and 
excitation  and  scintillation  efficiencies  are  obtained.  Some  detailed  information  on  drift 
times  and  drift  distances  between  elastic  and  inelastic  collisions is also  presented. 

1. Introduction 

Noble  gases  have  played  an important  role in nuclear  radiation  detectors  for  a long time 
(Knoll  1979).  Recently  their  range of applications  has  been  extended  to  other fields such 
as  optical  radiation  sources, including  lasers (Rhodes 1979,  Hutchinson  1980).  Most of 
these  applications  concern  the  transport of electrons  drifting  in  a gas under  the influence 
of an  electric  field.  Two  main  types of phenomena  produced by the  drifting  electrons 
are  involved,  namely  the  induced  electrical  charge pulse  and the  electroluminescence 
which results  from  the  excitation of the  noble gas atoms.  The first type of phenomenon 
is the basis for  ionisation  chambers,  and  the  second  one is the basis for gas scintillation 
and gas proportional scintillation counters (GPSC) (Conde  and  Policarpo  1967).  The GPSC 
has  attracted  much  interest  due  to  its high energy  resolution  (Policarpo 1977) and  large 
area  capabilities in soft  x-ray spectrometry  and  to  its use in energy  and  position  sensitive 
counters  for  high-energy physics and x-ray  astronomy  (Peacock et ai 1980, Anderson 
1981, Charpak 1982,  Ku er ai 1982, Mutterer 1982,  Policarpo  1982). 

Since our  work was motivated by a desire  to  understand  more fully the  mechanism 
of the GPSC, we describe  it briefly here. 

When  electrons  produced in a  noble  gas by the  incident ionising  radiation  drift  under 
the  influence of an  electric field they  can  acquire  enough  kinetic  energy  to excite the 
noble  gas  atoms. At  atmospheric  pressure  the  excited  states  thus  formed  lead,  after 
three-body collisions, to  the  formation of noble gas excimers  (Suzuki and  Kubota 
1979, Leite 1980,  Policarpo  1981).  These  decay  within  a  short time-typically a  few 
nanoseconds-emitting vuv photons in a  continuum  peaked  at 126  nm for  argon,  148 nm 
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for  krypton  and 173  nm  for  xenon  (Suzuki and  Kubota  1979).  These  photons  (the  so 
called secondary  or  proportional  scintillation)  are  detected by a  photomultiplier  or  a 
photo-ionisation  chamber giving rise to  an  electronic  pulse  whose  amplitude is pro- 
portional  to  the  energy of the  detected  radiation. 

For  the  heavier  noble gases Ar,  Kr  and Xe there is a  pressure  reduced  electric field 
intensity  threshold close to E / p  = 1 V cm" Torr" below which there is no  elec- 
troluminescence  (Feio et a1 1982) ( E / p  = 1 V cm" Torr-' is equivalent  at 300 K  to 
E / N  = 3.11 x 10"' V cm' or  3.11  Td, where N is the  number density of the gas atoms). 
For  stronger fields the  electroluminescence  intensity  increases in an  almost  linear way 
with the  electric field strength  (Conde er a1 1977). Up  to E / p  - 5 V cm" Torr-], ion- 
isation is very  improbable  and  a single  electron  drifting  along  the field lines  can produce 
a  few hundred  photons  per cm before it is collected by the  anode.  The efficiency for 
conversion of electrical  into  optical  energy is very high (besides  excitation,  the  only  other 
energy loss  mechanism  available is recoil in elastic  collisions)?  reaching  70%-80%. 

The good  energy  resolution achieved with detectors  based  on  proportional scin- 
tillation is in  fact due  to  the large amount of light produced  and  to  the fact  that there  are 
no statistical  fluctuations  introduced in the  number of electrons  through  ionisation,  as 
GPSC operate in the E / N  range  where  the  probability  for  electron  multiplication is zero 
or  very  low. 

It is essential  to  understand  quantitatively  the  phenomena involved in the  transport 
of electrons in noble gases (electroluminescence,  diffusion  parameters,  etc)  to  further 
their  applications in the field of radiation  detectors  and  optical  sources.  For this  purpose 
two  main  techniques are commonly  used:  Boltzmann  analysis  (Frost  and  Phelps  1964. 
Lowke  and  Parker 1969,  Huxley and  Crompton 1974,  Pitchford and  Phelps  1981,1982, 
Crompton 1983,  Ogawa  1984) and  Monte  Carlo  simulation  (Itoh  and  Musha 1960, 
Thomas  and  Thomas 1969,  McIntosh  1974,  Lucas  and  Saeele  1975, Milloy and  Watts 
1977,  Braglia  1977,  Sakai et a1 1977, Kukuparci  and  Lucas  1981,  Boeuf  and  Marode 
1982, Davies er a1 1984). 

Computer  experiments using Monte  Carlo  methods,  as  described in this work, 
although  very  demanding in computing  time,  provide  a  direct  method of testing  the 
physical  mechanisms  assumed, by comparing the simulation  results with data  obtained 
from  real  experiments.  On  the  other  hand,  Monte  Carlo  simulation may provide  infor- 
mation  not  available  from  Boltzmann analysis or  from  a  real  experiment,  thus  enlarging 
the  scope of understanding of the  processes  under  study.  Boltzmann  equation analysis 
is difficult to carry  out  when spatially  non-uniform  distributions  and  non-equilibrium 
processes  are  involved.  For  instance,  there is evidence  that  low-current  discharges in 
very  pure  noble gases  display  luminous  layers (Holst  and  Oosterhius 1921,  Druyvesteyn 
1931,  Hayashi  1982,  Fletcher 1985) which imply spatially  non-uniform  distributions. 
This is also the case for  the  electroluminescence  phenomena we study in this work, 
where  the  Monte  Carlo  method allows us to  obtain  a  detailed  description of the spatially- 
dependent  processes  involved,  as we show in table 1 and  illustrate in figure  11. 

In  this  work, we use  a  unidimensional  Monte  Carlo  simulation  to  study  the  electron 
drift velocities and  electroluminescence  in  noble  gases, in the E / N  range of interest  for 
GPSC work. 

Some  preliminary  results  on  electroluminescence in  xenon  have  already  been  pub- 
lished  using  this model  (Dias et a1 1983). 

In  order  to  use  the  Monte  Carlo  method  a  knowledge of the  relevant cross  sections 
is required.  These  are discussed in § 2. In § 3 we describe  the  details of our  Monte  Carlo 
simulation  and  present  the  results in 0 4. 
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Table 1. Results  for ( a )  argon. ( b )  krypton and ( c )  xenon (p = 760 Torr. T = 300 K) .  

Averages  between  two  Averages  between  two 
successive  collisions successive  inelastic  collisions 

Drift  Drift Kumber of Drift  Drift 
E! P EIN distance  time  elastic colls distance  time 
(V cm"' Torr- ') (Td) (nm) (PS) ( X  103) km) (ns) 

(a )  Argon 
0.50 
1 .oo 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5 .oo 

1.55 677 
3.11 471 
4.66 389 
6.21 364 
7.77 349 
9.32 337 

10.87 327 
12.43 321 
13.98 316 
15.53 309 

0.95 
0.59 
0.46 
0.43 
0.41 
0.39 
0.38 
0.37 
0.37 
0.36 

- 
232.2 t 216.3 

78.0 i 70.7 
41.0 t 35.7 
24.9 t 21.2 
17.0 If: 13.6 
13.3 i 11.2 
10.9 i 9.2 
8.5 i 7.0 

- 
412 t 284 
158 i 73 
97 2 31 
70 t 16 
55 t 10 
46 i 8 
40 2 6 
35 i 5 

- 
107.4 5 102.9 
33.0 2 32.3 
16.6 t 15.6 
9.7 t 9.2 
6.4 i 5.7 
5.0 t 3.7 
4.0 i 3.8 
3.1 5 2.8 

( b )  Krypton 
0.75 
1 .oo 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5 .oo 

2.33 340 
3.11 310 
4.66 268 
6.21 259 
7.77 252 
9.32 250 

10.87 244 
12.43 243 
13.98 238 
15.53 238 

0.47 
0.39 
0.34 
0.33 
0.31 
0.30 
0.30 
0.29 
0.28 
0.28 

- 
897.0 t 533.0 
156.0 t 131.7 
72.8 t 59.4 
41.5 t 34.4 
27.3 2 22.7 
19.6 i 16.5 
15.7 2 12.9 
12.7 t 10.5 
10.2 t 8.2 

- 
799 t 380 
172 2 69 
97 i 25 
67 t 13 
52 t 8 
43 i 6 
37 2 6 
33 2 5 
29 t 4 

- 
351.8 2 221.1 

51.7 f 45.8 
23.1 2 20.4 
12.8 t 11.5 

5.7 t 5 , 4  
4.6 t 4.3 
3.6 t 3.2 
2.9 I 2.7 

8.3 t 7.6 

( c )  Xenon 
0.50 
0.75 
1 .oo 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 

1.55 238 
2.33 195 
3.11 174 
4.66 161 
6.21 160 
7.77 153 
9.32 152 

10.87 150 
12.43 148 
13.98 147 
15.53 148 

0.39 
3.31 
0.26 
0.23 
0.23 
0.21 
0.21 
0.20 
0.20 
0.20 
0.20 

- 
881.1 t 611.0 
241.5 i 172.3 
113.8 2 88.6 
65.3 t 53.8 
45.2 2 37.9 
34.6 5 29.3 
25.9 i 20.9 
21.0 t 15.6 
16.8 t 12.9 

- 
426 t 214 
136 2 44 
78 i 17 
55 i 10 
44 i 7 
36 t 6 
31 t 5  
27 i 4 
24 i 4 

- 
231.5 t 181.5 
53.4 i 42.9 
25.4 2 22.2 
13.3 2 12.4 
9.4 t 8.6 
7.1 t 6.6 
5 ,1  i 4 6  
3.6 2 3.4 
3.3 t 2.9 

2. Electron scattering cross sections 

Reliable  scattering  cross  sections,  both  elastic  and  inelastic,  are  an  essential  requirement 
for  any  particle  transport  Monte  Carlo  simulation.  In this  section we summarise  the  data 
which  were  used throughout  our  calculations  for  argon,  krypton  and  xenon. 

2.1. Elastic  scattering 

The elastic  differential a,( 0)  and  integral a(&) cross  sections  were  obtained  from  theor- 
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etical  phase  shifts 6/(0 l SO) using the well known  expressions 

o,(@) = k-'I x exp(i6)) sin 6,(21+ 1) P,(cos @ ) l  (1) 

D(&) = (4 ; r /k2 )  (21 + 1) sin' (2) 

where k is the  electron  wavenumber  corresponding  to  energy E ( E  = 13.6025 k ? .  with E 

in eV and k in au). 
As  the €/A! range of interest for  the  present  work is a low and  restricted one,  the 

1 = 0 to 1 = 6  polarised  orbital  model  phase  shifts  from  McEachran  and  Stauffer  (1983) 
for  argon  and  from  McEachran  and  Stauffer (1984) for  krypton  were  chosen,  as  both 
sets of data  are reliable  especially  at low energies.  In  the  case of xenon.  however.  the 
1 = 0 to l = 6  phase  shifts  were  taken  from Sin Fai  Lam  (1982), as relativistic  effects. which 
become  important  for this gas.  were  taken  into  account in that  author's  calculations. 
Analytical  fittings  to  the l = 0 to 1 = 6  phase  shifts  were  accomplished in every  case. to 
facilitate the calculation of the  scattering cross  sections  at  any  energy using equations 
(1)  and  (2)  (for  xenon  the  appropriate relativistic  formulae  were  used  instead of (1) and 
(2)  (Mott  and Massey  1965, p  228)). 

From 1 = 7  to l = 50 we use the  effective  range  formulae of Ali  and  Fraser (1977) for 
the  phase shifts. 

A full discussion of the  mentioned  phase shifts  and  resulting  cross  sections together 
with a  complete  comparison  with  earlier  data  can  be  found in the  sources we mention, 
i.e. in McEachran  and  Stauffer  (1983,1984)  and Sin Fai Lam (1982). 

1 

/ 

2.2. Inelastic  scattering 

At  the low €/Nvalues with which we worked, only the lowest  excited levels are  expected 
to  be  reached  for  most of the  events when  excitation  occurs.  Thus  the  corresponding 
excitation  cross  sections  are  the  most  relevant  and we have  treated  them individually  as 
far as possible. 

At present  there is very  little  information on  the  electron impact  excitation  cross 
sections  for  the individual  electronic  excitation levels of argon,  krypton  and  xenon. 
Where  published values are  available, only a few points  can  be  found across the  electron 
energy  range we are  interested  in,  i.e.  from  threshold  to  about 15-20 eV. 

For  the first four  excited  states of argon  and  krypton (ls5. ls4, ls3 and  ls2 in the 
Paschen  notation) we did  simple  polynomial fits to  the  experimental  partial  excitation 
cross  section  data previously  published  for Ar  (Chutjian  and  Cartwright 1981) and  Kr 
(Trajmar et a1 1981).  extrapolating  down  to  the  thresholds.  For  xenon,  where  similar 
data  are  not  available in the  literature,  educated guesses  were made below 15 eV 
assuming  linear  variation with energy  and  relative  magnitudes  similar  to  those  published 
for  krypton  (Trajmar et a1 1981). 

To take  into  account  the excitation of the  remaining levels, a fifth excited  pseudo- 
state was then  considered.  Its  threshold (14.0 eV  for Ar,  12.5 eV for  Kr  and  10.8  eV  for 
Xe) was taken by averaging  over  the  structure of the excitation  functions obtained  from 
Brion  and  Olsen (1970) and  Cvejanovic  and  Read  (1974).  The excitation  cross  section 
of this  pseudo-level was taken as a  smoothly  increasing  function  from  its  threshold  which, 
together with the previously mentioned  four levels,  would  join the  total  excitation  cross 
sections of de  Heer et a1 (1979), whose data  meets  the  end of our  range of interest (15- 
20 eV).  As an  example. figure 1 shows the inelastic  cross  sections  for e- in Ar  used in 
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this work. If we add  the five excited  states  inelastic  contributions  described  above,  the 
resulting total  excitation cross  sections  tend to  be  situated lower than  the  total  excitation 
data of Schaper  and  Scheibner (1969) for  Ar,  Kr  and  Xe,  and also  lower than  those  more 
recently recommended by Ferreira  and  Loureiro (1983) for  Ar , and by Hayashi (1983) 
for Xe.  However, we verified that increasing our  particular choices of partial  excitation 

- l 
E ! 

0.16 1 

I 
11.0 

E I e V )  

Figure 1. Inelastic  scattering  cross  sections  for  electrons  on  Ar (PS refers to pseudo-state. 
see § 2.2). Curves: A.  M ;  B,  l s4 ;  C. ls3: D, ls2; E, PS: F, ion. 

cross sections by a  factor of 2  did  not  affect significantly the results obtained in  this work, 
as we shall see  later. 

The ionisation  cross  sections we used  were  also  simple  polynomial fits to  the well 
established  data  from  Rapp  and  Englander-Golden  (1965). 

2.3. Total  scattering  cross  section 

Having  adopted  the  integral  elastic,  partial  excitation  and  ionisation cross  sections 
described  in  the  previous  sections,  and  to  be  consistent with our  choice, we simply added 
the  respective  contributions  to  obtain U, ( E )  in the  energy  range  we worked-up to a few 
eV  above  inelastic  threshold.  The  variation in the  published  results  for  both  the  total 
and the  integral elastic  cross  sections is such that  a  more precise determination  would 
be impossible  at present (cf McEachran  and  Stauffer,  1983,1984). 

For  each of the noble  gases argon,  krypton  and  xenon,  the  total  (elastic + 
excitation + ionisation)  scattering  crosssection U,(&) wasthenfitted by -2Ocubicsplines, 
accomplishing  a better  than  1%  agreement with the values we calculated. 

The fittings to all phase shifts and cross  sections will be published in detail in a 
forthcoming  paper  (Stauffer eta1 1986) in away  suitable  for low-energy  electron transport 
Monte  Carlo  simulation  work. 

3. The unidimensional Monte Carlo simulation 

For  readers  not  familiar with the  general  features of a  standard  particle  transport  Monte 
Carlo  simulation, we refer  them  to Cashwell  and Everett (1959), Carter  and  Cashwell 
(1975), Duderstadt  and  Martin (1979) and  James (1980). 

While  the  processes involved in the  drifting of electrons  are actually three-dimen- 
sional, the unidimensional  model we developed ($§ 3.1  and  3.2) achieves  a  good agree- 
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ment with experimental  data. In spite of the fact that it is a  unidimensional  model, it 
contains the essential  processes. 

(i) The  electron  anisotropic  scattering is taken  into  account  through  an  energy 
dependent  backward/forward  scattering  probability. 

(ii) The  electron  energy loss through recoil  in  elastic  collisions with the  noble gas 
atoms is also  considered  using  an  energy  dependent  backward/forward  momentum 
transfer  factor. 

(iii) The variation of the  total  scattering cross  section  due  to  the  electron  acceleration 
along  each  individual  free  path is also  taken  into  consideration. 

The details will be given in § Q  3.1 and 3.2. Throughout  these  sections we use  the 
following notation. 

E 

electric field strength 
electron  charge  and mass 
the gas atom mass 
number density of the gas atoms 
= m/M 
= mM/(m + M ) ,  the  reduced mass of the electron-gas atom system 
velocity of the gas atom in the  laboratory  frame 
length  and  duration of one  free  path of the  electron 
initial, final and  instantaneous velocities of the  electron in the 
laboratory  frame  when  one  free  path is considered 
= v - v g ,  the  instantaneous velocity  relative to  the gas atom  (centre 
of mass frame) 
= dpv:, the  instantaneous  energy in the  centre of mass frame. 

All  velocities  have  algebraic  values. 

3.1. The  free  path 

The  electron is assumed  to  move  only  along  linear  paths  parallel  to  the  uniform 
electric field direction, colliding  at the  end of each  free walk with  a gas molecule 
whose  velocity v g  is a  random  number  from  the gaussian  Maxwell velocity com- 
ponent  distribution  at  the  considered  temperature (300 K). 

The  length A of an  individual  free  path in any Monte  Carlo  electron drift  simu- 
lation is determined by a  second  random  number  R which is related  to  the  path 
integral by 

1nR = - N ur dA lo;' (3) 
or 

1nR = - N I  u , v d t  
v 1  

(4) 
U 0  

where U, is the  total  scattering cross  section and  R is uniformly  distributed in the 
interval [&l]. 

Assuming  that  the  electron  motion is unidimensional, i.e.  that  the  electron is 
bound  to  move  only  along  the field lines,  its  laboratory  and  relative velocities are 
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given by 
U = u u  + e E / m  t 

U ,  = u o  + e E / m  t - u g  

at  any  instant t along  the  path. 
The  path  integral (4) then  becomes 

" r l  

In R = - ( N m / e E )  I o, (E )  ( U ,  + u g )  du, .  ( 5 )  

As ug is  of the  order of 10-4u, in the  range of E / N  we use,  and  the  uncertainty in 
a, is certainly  larger  than  that  factor, it is reasonable  to  approximate  the  integral by 

o r 0  

" r l  
In R = - (Nm/eE)  ,/ G,(&) u ,  du,  

0 rO 

= - ( N m / p e E )  I o, ( E )  d E. 
F1 

(6) 
EO 

As  the  total cross  section at(&) was fitted by cubic  splines,  the  solution of the 
integral  equation (6) is the  root of a  fourth-degree polynomial in E .  The regula falsi 
successive approximation  method was used  to find the  root  for  each  path  (the 
more efficient  Newton-Raphson  method  failed to converge  near E = 0). 

We  should  emphasise  that  the  magnitude of the  random  number  determines  the 
'shape' of each  particular  free  electron  trajectory in the  sense  that  electrons which 
start with u o  < 0, i.e. against the  accelerating  field,  may  or  may  not  turn  around 
during  one  free  random walk according  to  the R value. 

Once is four,d, u r I  and u 1  are  obtained  from 

U , ,  = 2 (2El/p)19 ( 7 )  

U 1  = u,1 + u g .  (8) 

where  the sign was determined by the sign of u o  and by the  magnitude of R ,  and 

The position z of the  electron  relative  to  the  previous collision and  the  time  inter- 
val T between collisions are  then  computed by 

z = (+mu; - Imui ) /eE (9) 

T = ( u l  - u o ) / ( e E / m ) .  (10) 
After  a  number of collisions, the final position Z and  elapsed  time T will be Z = 
Zz and T = ZT. 

3.2. The collision  process 

At  the  end of each  free  path  the  electron will suffer  a collision whose kind-elastic, 
excitation  to ls5, ls4, ls3, ls2 or  pseudo-state  or ionisation-will be  decided  upon 
through  the use of a  third  random  number. If e l  is the  energy  at which the collision 
occurs,  the  sum of the cross  sections  for  the  allowed  processes  at  that  energy is 
normalised to 1 and divided into  intervals  proportional  to  each individual  cross  sec- 
tion:  the  random  number falls into  one of those  intervals  and in this way deter- 
mines which kind of collision occurs. 

Two  main  groups of electron collisions  may be  considered:  elastic  and  inelastic. 
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0.8 l 

i 

l ‘  , , , 

0 2 . 0  4 . 0  6 . 0  8 .0  10 .0   12 .0   14 .0  
E i e V )  

Figure 2. Probability of backward  elastic  scattering for electrons  on  argon. 

3.2.1. Elastic collisions. This  type of collision is  by far  the most important in our 
case,  since  most of the collisions that occur are elastic  for the E / N  range we con- 
sidered. Special care was taken in making  their  treatment as accurate as possible. 

As our  model is a  unidimensional one,  the first decision to  make when a col- 
lision occurs is whether  the  electron is going to  be  scattered  forward  or  backward. 
In  order to take this  decision  correctly, we construct  the following  backward  scat- 
tering  probability  function P,,(&): 

by averaging  the elastic  differential  cross  section a,(O) over  the  backward 
hemisphere. 

Values of were  tabulated  at 0.05 eV intervals, a,(8) being integrated 
numerically. If is the  energy  at which the collision occurs, P,,(EJ is obtained by 
linear  interpolation  between  the two  nearest  tabulated  values,  and  the  forward/ 
backward  decision is made by comparing  a  fourth  random  number with the mag- 
nitude of P b ( ~ l )  (the forward  probability is of course  the  complement of 1). 

E l N ( T d )  
0 4 . 0  8.0 12.0 16 .0  

1.2 - 

“1 
0 1 . 0  2 .0  3 . 0  4 . 0  5.0 

E l p  ( V  cm” Torr”] 

Figure3.Electrondriftvelocityinargoncalculatedwith:Pb= 0 .25(A) ;Pb  = O.SO(+);P,= 
0.75 ( X ) ;  Pb(€) as in  figure 1 and  equation 11 (0). 
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The backward  scattering  probability  function P b ( & )  is plotted in figure 2 for 
argon  as  an  example. P,,(&) for  krypton  and  xenon show  similar structure  although 
the  features  are  a  little less pronounced  as we go from  argon  to  krypton  to  xenon. 
This  plot  shows  clearly  how  anisotropic the  scattering really  is:  even  at  very  small 
energies Pb(&)  shows  drastic  and  rapidly  varying  deviations  from  the  initial  isotropic 
0.5  value,  and  although P b ( & )  shows less structure  at higher energies, its magnitude 
is always well under 0.5 here. 

We wish to  emphasise  that Pb(&) represents  the  probability of scattering in the 
direction  opposite  to  the  motion of the  electron  before  the collision and  not  necess- 
arily in the  direction  opposite  to  the  accelerating field. Further we have  verified for 
instance  that  for  the  case of xenon  at E / p  = 3.0 V cm" Torr-', in less than  1% of 
the  free  paths did the electrons  go  through energy zero.  This is in part  due to the 
fact that  the  elastic cross  section  increases  very  rapidly as the  energy of the  electron 
approaches  zero.  This  behaviour is true  for all the  heavier  noble gases (cf 
McEachran  and  Stauffer 1983, 1984) and this  means  that  a  change in direction of 
the  electron  due  to  the  electric field itself is very  unlikely, i.e.  there is a low prob- 
ability of the  electron having zero velocity.  Almost all changes in direction of the 
electron  are  due  to collisions with gas atoms. 

To show  how  sensitive the results  can be  to  the changes in P,,(&), we plot in 
figure 3 the  argon  drift velocities computed with the  correct Pb(&) (from  equation 
(11)  and  shown  in  figure 2 )  together with the  drift velocities obtained using the  con- 
stant  values P b  = 0.25, 0.50, 0.75 while keeping  the  same at(&). The deviations 
from  the  correct values are  substantial even  in the case of P b  = 0.50 which corre- 
sponds  to  isotropic  scattering. Similar  though less pronounced  deviations  were 
observed in the  calculated  electroluminescence  yield. 

The next step is to  calculate  the  electron  energy loss in the elastic collision 
itself,  thus  obtaining  the initial  conditions  for  the  next  free  path. 

In  a  real  three-dimensional process the  energy lost in an  elastic collision would 
be  given by 

where 6' is the  scattering  angle  and E' is the  energy  after  the collision. 
In our unidimensional  model,  to calculate the  momentum  transferred  to  the gas 

atom in an elastic  collision we introduce  two  energy-dependent  momentum  transfer 
factors-TMf(&)  for forward  scattering  and TMb(&) for  backward scattering-by 
averaging  over  the  corresponding  hemisphere: 

A E  is then  approximated by 

- 2 Y / ( Y  + T M d E , )  E1 forward  scattering (15) 
= { -2y,(y + 1) ' T M b  ( & l  backward  scattering. (16) 
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Figure 4. Forward  momentum  transfer  factor for electrons on argon. 
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Figure 5.  Backward  momentum  transfer  factor for electrons on argon. 

and 

U: = W U , l [ l  - 2y/(y + 1 ) 2  TMf,bI1’2 

where W = +l for  forward  scattering  and W = -1 for  backward  scattering. 

uo ,  is 
Finally the  electron velocity in the  laboratory  frame  after  the collision, the new 

U0 = U: + u g .  (20) 

At this  point  a new ug is sampled  and we repeat  the whole  procedure  beginning 

The T M f  and TMb values  were  tabulated at 0.05 eV  intervals,  and  the TM value 
in 0 3.1. 
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at the  current  energy was then  obtained by interpolating  between  the  two  appro- 
priate  values.  Figure 4 and figure 5 show  plots of TM,(&) and TMb(&) using  argon 
as  an  example.  Plots  for  krypton  and  xenon  behave similarly. 

3.2.2.  Inelastic collisions. When  the collision happens  to  be  inelastic,  the  energy 
loss is assumed to  be  equal  to  the  energy of the  corresponding level in the case of 
excitation  or  to  the  ionisation  potential in the case of ionisation.  When  ionisation 
occurs,  one half of the  electron excess  energy is taken  as  the new energy  for  each 
of the two  resulting  electrons, which are  assumed  to  have  the  same history  from 
then  on  (this  approximate way of treating  the two  resulting  electrons is a  simpli- 
fication which does  not affect the  results, as in the  energy  range of the  present cal- 
culations  only  a  few  ionisation  events  actually  occur). 

4. Results 

Figures 6-8, 10, l1 and  tables 1, 2 show the  results of our  simulation  experiments 
when  a  group of -30 electrons, with  initial  velocities  sampled  from  a  gaussian 
Maxwell  velocity component  distribution, was allowed to drift  along  a fixed 

Table 2. Total  excitation Q,,, and  scintillation Q,, efficiencies, 

Q,, Qsc (%) 
EIP EIN 
(Vcm" Torr") (Td) Ar Kr Xe Ar Kr Xe 

0.50 1.55 0.0 0.0 0.0 0.0 0.0 0.0 
0.75 2.33 0.0 1.3 2.6 0.0 1 .1  2.2 
1 .oo 3.11 3.3 15.7 27.4 2.8 13.1 23.2 
1 S O  4.66 25.4 51.9 55.0 21.5 43.3 46.9 
2.00 6.21 49.1 68.7 71.4 41.4 57.1 60.4 
2.50 7.77 63.7 79.0 80.2 53.5 65.5 67.8 
3.00 9.32 73.8 85.0 85.4 61.8 70.2 71.9 
3.50 10.87 80.2 88.3 88.5 66.8 72.8 74.3 
4.00 12.43 83.4 90.3 89.6 69.3 74.2 74.6 
4.50 13.98 85.8 91.4 90.4 71.2 75.0 75.3 
5.00 15.53 87.9 92.4 92.1 72.5 75.7 76.6 

distance, 3.5 mm  for  Ar, 2.5 mm  for  Kr  and 1.5 mm  for  Xe, so that  the  number of 
collisions turns  out  to  be of the  same  order of magnitude in each  case. The  quan- 
tities of interest  are  obtained by averaging  over  the whole group of electrons.  The 
simulations  were  carried  out  at T = 300 K and p = 760 Torr in the E / p  range 
relevant to GPSC work, typically -0.5 to 5.0 V cm" Torr-'  (corresponding  to 
E/N - 1.6  to 15.5 Td).  The noble gas collision velocities are  sampled  from  a gaus- 
sian  Maxwell  velocity component  distribution. 

Drift velocities were  calculated by averaging the Z / T  values  over the whole 
group of electrons.  These  Monte  Carlo  results  are  plotted in figures 6,  7  and 8 for 
argon,  krypton  and  xenon,  respectively,  as  a  function of the  reduced  electric field. 
They  show  a  good  agreement with experimental  values  found  in  the  literature 
(Dutton 1975,  Bowe  1960,  Pack and  Phelps 1961,  Pack et a1 1962, Christophorou et 
a1 1979,  Cumpstey  and Vass  1980, Brooks er a1 1982) which are also  shown  for 
comparison. 
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Figure 6. Electron  drift  velocity  in  argon: 0. our  calculation; A. Bowe  (1965): +. Pack  era[ 
(1961); 0. Christophorou er a1 (1979). 
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Figure 7. Electron  drift  velocity in krypton: 0. our calculation; A, Bowe  (1965): +. Pack er 
a1 (1962). 

E I N ( T d 1  
2.0  4 .0 6 .0  8.0 10.0  12.0 14.0 16.0 

1.6 1 

0 1.0  2.0 3 .0  4 . 0  5.0 
E l p  ( V  cm"  Torr") 

I 
Figure 8. Electron  drift  velocity  in  xenon: 0 ,  our calculation; A, Bowe  (1965); X .  Brooks 
et a1 (1982); 0, Cumpstey  and  Vass  (1980); f ,  Pack  eral(1962). 
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As we have  already  mentioned.  the drift  velocity  results  show an  important  sen- 
sitivity to  the  extent of the  anisotropy  introduced in the calculations  (while  keeping 
the  same q ( ~ ) ) ,  as  was  shown in figure 3. 

The E / N  range we use in the  present  simulation  experiments  does  not allow for 
electron  avalanches  (several  thousand elastic  collisions  occur  between  any  two  suc- 
cessive inelastic  collisions,  see table l) ,  the inelastic  scattering  being only a very 
small  fraction of the  total  scattering. So our results on  drift velocities are  not  sen- 
sitive to  the  unavoidable  uncertainty in the  excitation cross  sections, as this uncer- 
tainty will not affect the  total cross  section in any  appreciable way (as  an  example, 
a  non-significant  change in the drift  velocity, i.e. smaller  than  the statistical spread 
of the  calculations  shown in figure 8, was observed  for  xenon  at € / p  = 
3.5 V cm" Torr"  when all five partial  excitation  cross  sections  were  increased by a 
factor of 2 in the  simulation). 

We  should  state  that in the case of xenon,  the only  case  where  relativistic  cross 
sections  were  used.  the  agreement of our drift velocity results with experimental 
data was improved by the use of these  elastic  cross  sections. The xenon  non-rela- 
tivistic data we used in Dias ef a1 (1983) tended  to  produce  overestimated drift 
velocities. 

0.001 I I I ,  I ,  I ,  
0.0001 0.001 0.01 0.1 1 

E I N ( T d )  

Figure 9. Electron  drift  velocity in argon for E / N  < 1 .Td. A, our calculation; +. Pack  and 
Phelps (1961); 0. Robertson  (1977). 

We  have  also  extended  our calculations  for argon  to very low values of E / N  (< 1 Td) 
to  be  able  to  compare  electron  drift velocities with existing  experimental  data in this 
region  (Pack  and  Phelps 1961, Robertson  1977).  The  results  are  shown in figure 9. In 
this  particular  case  they  were  obtained by the  simulation of the drift of one  electron 
through 6.5 cm (the 3.5 mm drift  distance in Ar  used in our calculations at higher E/N- 
see  beginning of this section- proved  to  be insufficient to stabilise the  calculated  results 
in most of this low E/N range). A good  agreement with experiment is also found in this 
region,  where  the  electron  energies  are in the vicinity of the  Ramsauer minimum and 
the  scattering cross  section is rapidly  varying. 

In  the  present  simulation  experiments we have  also  studied the  electroluminescence 
produced while electrons  drift  along  the field, in the E / N  range of interest  for  pro- 
portional  scintillation  work. 
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Every  time  an  excitation  occurs in  a  collision, we assume  that  a  photon with the 
energy  characteristic of the  peak of the excited  dimer  continuum vuv emission (9.8  eV 
for AT;, 8.4 eV  for Kr;and 7.2  eV for  Xe?) is emitted.  Considering  the whole group of 
electrons,  we  computed  the  reduced light output-the number of photons  produced by 
one  electron  per  unit  distance  per  unit pressure-as a  function of the  reduced  electric 
field (Conde et a1 1977). The results  thus  obtained  for  argon,  krypton  and  xenon  are 
plotted in figure 10. 

E l N l T d l  - 2 . 0  4 .0  6 . 0  8.0 10.0 12.0 14.0 16.0 

e 
d 

0 

l 

Figure 10. Argon ( A ) ,  krypton (0)  and  xenon (0) reduced  light  output as computed in this 
work.  Excitation  coefficients for argon: 0,  Lagushenko  and  Maya (1984); x .  Ferreira  and 
Loureiro (1983). 

So far,  absolute  experimental  values  for this  quantity  have  not  been  measured with 
good  precision.  Although  our light output  results  are  expected  to  be  affected by the 
uncertainty on the  excitation cross  sections,  the influence is still negligible at  the low 
€ / N  we used,  as  most of the collisions are elastic  and an  electron within  a  range of 
energies which  allow for  excitation will spend  a  long  time  and  suffer  a  great  number of 
collisions before  excitation successfully occurs (at € / p  = 4.5 V cm" Torr"  in  xenon. a 
non-significant difference,  i.e. within the statistical  spread of the  calculations shown in 
figure 10, was observed in the  computed light output  when all the five partial  excitation 
cross  sections  were  increased by a  factor of 2). 

Theoretical  and  experimental values of the  threshold  for light production  have  been 
published  (Feio et a1 1982 and  references  therein).  Although  they  are  scattered  over a 
wide range in the vicinity of E / p  = 1 V cm" Torr-',  they  are  consistent with our  results. 
The  computed  threshold  for light  production is completely  determined by the  extent of 
momentum  transfer in  elastic  collisions compared  to  what is gained  from  the field along 
free  paths. 

Above  this  threshold,  our  calculated  reduced light output  increases linearly with 
E / p  until  the  ionisation  threshold is reached: this is also the  behaviour  shown by the 
experimental  data  (Conde et a1 1977, Andresen et a1 1977, Cumpstey  and  Vass  1980, 
Leite et a1 1981,  1982,  Policarpo  1982). 

Since  in our calculations we assume  that  one  photon is produced  for every  excitation 
event,  our  reduced light output  results can  also be  compared with some  excitation 
coefficients  available in the  literature  calculated  through  Boltzmann analysis. Those 
which fall  within our  range  (Ar)  are  included in  figure 10 and  agree very  well  with our 
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results.  Above €/p = 4.5 V cm" Torr" in Ar,  the production of extra  electrons by 
ionisation, which is starting  to  occur,  introduces  larger  fluctuations  and  leads  to  a  steeper 
increase in the  number of excitations  (i.e.  photons)  obtained in our  calculation:  once 
ionisation is present,  the  reduced light output we calculate will depend  on  the drift 
distance  considered,  as  the  number of electrons will increase with that  distance.  This 
would  account  for  the  apparent discrepancy  at €/p - 5.0 V cm" Torr" in figure 10 
between our  reduced light output  and  the  excitation coefficients there  reported. 

There  has  been  recently  a  renewed  interest in the  study of the  distribution of luminous 
layers  displayed in low-pressure  discharges in noble  gases  before an  equilibrium is 
reached  (Hayashi 1982, Fletcher 1985). At  the range of E/Nwe scan in the  present  study 
(which  while  being a low one  already allows  for  excitation and  consequent  photon 
production),  this  spatial periodicity of the  photon emission is also expected.  This is 
evidenced by the  existence of a  characteristic  value,  for  each  €/Nvalue. of the  average 
distance  travelled by one  electron  between successive inelastic collisions as shown in 
table 1. The distributions of these  distances  have  a  rather  small  variation  about  the  mean 
value, which explains  the  appearance of discrete  luminous  layers  under  the  appropriate 
conditions.  Thus  for  argon with E/p = 3.0 V cm" Torr" we would expect,  at p = 
760 Torr. T = 300 K.  to  have  the first layer  centred  at 70 ,pm from  the  source of electrons, 
the  second  layer  somewhat  broader  centred  at 140 ,pm,  etc.  Our  range of €/Nis still low 
enough  to  exclude  or minimise the possibility of ionisation  which.  when  producing  a 
significant number of extra  electrons,  tends  to  blur  the  separation  between  the  layers by 
introducing  large  fluctuations in the  number of photons  produced. 

On  the  other  hand,  table 1 also  shows that  the  distributions of drift  times and  number 
of elastic  collisions  between  two  successive  inelastic  collisions always have  variations of 
the  order of the  mean  values.  The  variation in the drift  times  accounts  for the  experi- 
mental difficulty in resolving in time  the  producing of photons  and shows  that  position 
sensitive techniques using gas proportional scintillation counters  should be  based  on 
drifting  distances  rather  than  on drifting  times. The very high number of elastic  collisions 
that  occur  on  average  before  an  electron  succeeds in exciting an  atom  (table 1) and  the 
very  small  energy  gained  between  two  elastic collisions (77 meV, 57 meV. 35 meV  for 
Ar,  Kr.  Xe. respectively,  at E/p = 3.0 V cm" Torr",  see  table 1) explain  how  crucial 
it is to  use extremely  pure  noble gases in GPSC work:  the  presence of even  a small 
percentage of an  impurity  has  a  very  good  chance of quenching  the process of noble gas 
atom  excitation  and  consequent  photon  emission. 

We call the  attention of the  reader  to  the fact  that  for a fixed value of €/p the  drift 
times  and  drift  distances listed in table l(a,b,c) are inversely proportional  to  the  pressure 
p, so that  for  each €/p (€IN) those  results  refer only to  the  conditions  stated in the  tables 
(p = 760 Torr, T = 300 K). but  they  can  be  transformed easily if different  conditions  are 
considered. 

In figure 11 (simulation in xenon, E/p = 3.0 V cm" Torr") the  evolution  of  the 
energy  and  position  (plotted  every 100 collisions) of  a  particular  electron  along  the field 
can  be  followed, showing in detail  the process of energy gain from  the field and  energy 
loss in elastic  collisions through  momentum  transfer  to  the  atoms,  together with the 
ultimate  high  losses  caused by the inelastic  collisions.  Most  of the collisions  occur  at 
energies  above  the  Ramsauer  minimum,  the  presence of this  minimum in the  scattering 
cross  section  being  clearly  evidenced in figure 11 by the  energy  gap in the beginning  of 
each  plotted cycle. 

Note  that figure 11 is just  depicting  a  detail  taken  from  our  xenon  calculations, which 
were  extended  over 1.5 mm  for  each  one  of  a  group  of -30 e- (see  beginning of this 
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Figure 11. Energy  versus  position of one  electron,  plotted  every 100 collisions 
3.0 V cm" Torr-'. e-  in xenon) 

( E / p  = 

section)  producing  the  results  shown  in figures 8 and 10 and  tables l(c) and 2 for  electrons 
in xenon  at € / p  = 3.0 V cm" Torr". 

In  the  range of € / N  we studied,  the  energy  gained by the  electrons  from  the  electric 
field can be  converted  into  optical  energy with very high efficiency,  as the  energy lost by 
the  electron in  elastic  collisions is very small  and yet ionisation  events  are still very few. 
In  table 2 we show the results obtained  for  the  total  excitation  and scintillation efficiencies 
for  argon,  krypton  and  xenon.  These two quantities  are defined  as the  fraction of the 
electron  energy  gained  from  the  electric field which is used  for  excitation  and which is 
carried by the vuv photons,  respectively.  The  total  excitation efficiency was computed 
by adding  the  partial  excitation efficiencies corresponding  to  the five states  considered 
(see D 2.2) .  The  total scintillation efficiency was obtained considering that  the available 
optical  energy is the  product of the  total  number of excitations  to  the  same five states 
multiplied by the  energy of the  photon  emitted by the  excited  dimer (every  excitation is 
assumed  to  result in the  production of a  photon,  as  stated  before).  Excitation efficiency 
in GPSC has been  treated in Feio et a1 (1980) where  an  experimental  value of 97%  (with 
a  margin of 20%) for  krypton is quoted  (note  that  the  quantity which is named 
scintillation efficiency by those  authors is actually  an  excitation  efficiency). 

The  data in table 2 show that vuv radiation  sources  can in principle be built with an 
optimised  efficiency of conversion of electrical  into  optical  energy if a  reduced  electric 
fieldof4.S-5.0 V cm" Torr"isused.Abovethisrange,ionisationlowersthatefficiency. 

Although  the  ratio Qsc/Qexc is not  constant in principle,  the  data in table 2 show 
that Q,,/QeXc = 0.83 i 0.01 in agreement with the fact that, within the  range of our 
calculations,  the first four excited  states are  those  predominantly  excited. 

5.  Conclusions 

The  unidimensional  Monte  Carlo  method which we have  developed in this paper gives 
good  results  for  the drift  velocities and  electroluminescence of noble gases  in the low 
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E / N  range, allowing us to predict  as well other  electron  transport  quantities  as given in 
tables 1 and 2. 

In  this  unidimensional  model  the  general  Monte  Carlo  particle  transport  path  integral 
equation. 

U 1  

l n R =  - N i  o , u d t  
U (1 

is reduced to 

In R = - ( N m / p e E )  1 U , ( & )  da.  
E 1  

E O  

Great  care was taken  to  introduce in this unidimensional  approximation  the  appropriate 
factors which take  into  account  the  three-dimensional  nature of the  electron collision 
processes.  A  much  more  elaborate  treatment is necessary for  a full three-dimensional 
simulation, unless some simplifying assumptions are introduced  for  momentum  transfer 
and  angular  scattering  during  the collisions (e.g.  isotropic  scattering).  This unidi- 
mensional  approach  can  be  seen  as  a successful compromise  between  accuracy  and 
computational  effort when a  correct  treatment is required. Below the  threshold  for light 
production,  the  energy which the  electrons  acquire  from  the  electric field is entirely lost 
through  momentum  transfer in elastic  collisions  so that  excitation of atoms  and  the 
consequent  production of photons  never occur while electrons  drift  along  a sufficiently 
low reduced  electric field. We can  see that  momentum  transfer plays  an important  role 
not  only in the  determination of the  photon emission  threshold  but also in the way 
excitation  and scintillation efficiencies grow with E / N  before  a  maximum is reached. 

An  easy  and  detailed  use of elastic  and  inelastic data  throughout  the  simulations was 
possible by the  introduction of analytical fittings to all required  cross  sections as functions 
of energy. 

The  agreement of our results with previous  experimental  work  shows  that  mech- 
anisms  based on the direct  excitation of the  noble gas atoms by the  electrons can fully 
account  for  the  secondary light production.  There is no  need  to  consider  other processes 
like  collisions  with ground  state  dimers  or  neutral  bremsstrahlung. 

The use of a  unidimensional  approach was a first attempt  to  obtain  absolute  and 
direct  results  on  electroluminescence yields and  excitation  and  scintillation efficiencies 
in the  range of E / N  of interest  for GPSC. More definite data  on  electron  impact  partial 
excitation  cross  sections in noble gases near  threshold would help  to  improve  the  results 
on  the  electroluminescence in GPSC presented  here,  although  these were  shown  not to 
be  strongly  affected by the  uncertainty in that  data. 

The  authors  are  developing  an  experimental  procedure  to  measure,  at low pressure 
and within the E / N  range of this  present  study,  the  spatial  distribution  of  the  luminous 
layers  displayed by noble  gases, in order  to confirm the  computed  results  of  separation 
between  layers  and  scintillation efficiencies as a  function of E / N  (tables 1 and 2). 

We  also intend  to  repeat  these  calculations using a full three-dimensional  treatment 
and  taking  into  account  angular  variation in scattering  and  momentum  transfer.  More 
sophisticated  techniques, such as the null collision method  (Skullerud 1968, Lin and 
Bardsley 1978) will be  used  to  reduce  the  amount  of calculation required. A comparison 
with our  present  results will enable us to  make  a  more definitive  evaluation  of the 
unidimensional  model  developed  here. 
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